Functionalization of different polymers with sulfonic groups as a way to coat them with a biomimetic apatite layer.

نویسندگان

  • I B Leonor
  • H-M Kim
  • F Balas
  • M Kawashita
  • R L Reis
  • T Kokubo
  • T Nakamura
چکیده

Covalent coupling of sulfonic group (-SO 3H) was attempted on different polymers to evaluate efficacy of this functional group in inducing nucleation of apatite in body environment, and thereupon to design a simple biomimetic process for preparing bonelike apatite-polymer composites. Substrates of polyethylene terephthalate (PET), polycaprolactam (Nylon 6), high molecular weight polyethylene (HMWPE) and ethylene-vinyl alcohol co-polymer (EVOH) were subjected to sulfonation by being soaked in sulfuric acid (H2SO4) or chlorosulfonic acid (ClSO 3H) with different concentrations. In order to incorporate calcium ions, the sulfonated substrates were soaked in saturated solution of calcium hydroxide (Ca(OH)2). The treated substrates were soaked in a simulated body fluid (SBF). Fourier transformed infrared spectroscopy, thin-film X-ray diffraction, and scanning electron microscopy showed that the sulfonation and subsequent Ca(OH)2 treatments allowed formation of -SO3H groups binding Ca2+ ions on the surface of HMWPE and EVOH, but not on PET and Nylon 6. The HMWPE and EVOH could thus form bonelike apatite layer on their surfaces in SBF within 7 d. These results indicate that the -SO3H groups are effective for inducing apatite nucleation, and thereby that surface sulfonation of polymers are effective pre-treatment method for preparing biomimetic apatite on their surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Alkali and Heat Treatment on Biomimetic HA Coating on Ti6Al4V

In this study, time of calcium phosphate formation on Ti6Al4V alloy with or without alkali and heat treatments was investigated. Specimens were soaked in 0, 5, 10 M solutions of NaOH at temperatures of 60 or 80 °C for 24, 72 h. Their surfaces were characterized using scanning electron microscopy and thin film X-ray diffraction. It was found that optimum condition is 72h soaking in 5 M NaOH in 8...

متن کامل

Preparation and Characterization of Hydroxyapatite Coating on Ti6Al4V Cylinders by Combination of Alkali-Heat Treatments and Biomimetic Method

Biomimetic method was used to apply hydroxyapatite (HA) coating onto Ti6Al4V cylinders. This process is a physicochemical method in which a substrate is soaked in a solution simulating the physiological conditions, for a period of time enough to form a desirable layer of the calcium phosphate on the substrate. In the present study, specimens were soaked in 5, 10 M solutions of NaOH at temperatu...

متن کامل

ساخت، مشخصه یابی و بررسی خواص مکانیکی و زیستی داربست هیبریدی نانوکامپوزیتی استخوانی از جنس آپاتیت/ ژلاتین- کیتوسان به روش زیست تقلیدی

In this project, we prepared biomimetic nanocomposite scaffolds from gelatin and chitosan and hydroxyapatite and subsequently the scaffolds were evaluated by common used bulk technique. For this purpose, the nanocomposite hydrogel/apatite bone tissue engineering scaffolds were fabricated using applied biomimetic method accompanied with freeze drying technique. The apatite was precipitated usi...

متن کامل

Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process.

Bone-like apatite coating of polymeric substrates by means of biomimetic process is a possible way to enhance the bone bonding ability of the materials. The created apatite layer is believed to have an ability to provide a favorable environment for osteoblasts or osteoprogenitor cells. The purpose of this study is to obtain bone-like apatite layer onto chitosan fiber mesh tissue engineering sca...

متن کامل

PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity

Novel scaffolds composed of poly(L-lactic acid) (PLLA) skeleton covered with bonelike apatite or apatite/collagen composite were produced via a combined phase-separation technique and an accelerated biomimetic coating process. Saos-2 osteoblast-like cells were used to evaluate the cellular behaviors on these biomimetic coatings. Cell morphologies on the surfaces of PLLA scaffolds, PLLA scaffold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials science. Materials in medicine

دوره 18 10  شماره 

صفحات  -

تاریخ انتشار 2007